Определение параллелограмма. Свойства его углов, сторон и диагоналей
Ответы на вопрос
Ответил lisalisajulia
0
. Параллелограммом называется четырехугольник, у которго противоположные стороны параллельны, т. е. лежат на параллельных прямых
Свойства
Противоположные стороны параллелограмма равны
| AB | = | CD | , | AD | = | BC | .
Противоположные углы параллелограмма равны
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
| AO | = | OC | , | BA | = | OD | .
Сумма углов, прилежащих к одной стороне, равна 180
.
Сумма всех углов равна 360°
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон:
пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d1^2+d2^2=2(a^2+b^2)
Свойства
Противоположные стороны параллелограмма равны
| AB | = | CD | , | AD | = | BC | .
Противоположные углы параллелограмма равны
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
| AO | = | OC | , | BA | = | OD | .
Сумма углов, прилежащих к одной стороне, равна 180
.
Сумма всех углов равна 360°
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон:
пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d1^2+d2^2=2(a^2+b^2)
Новые вопросы
Химия,
2 года назад
Математика,
2 года назад
Геометрия,
10 лет назад
Математика,
10 лет назад
История,
10 лет назад