Обчисліть площу криволінійної трапеції, обмеженої графіком функції y=3x^2 і прямими y=0, x=1, x=2
Ответы на вопрос
Ответил ildar502020
0
Ответ: 7 кв. ед.
Объяснение:
Обчисліть площу криволінійної трапеції, обмеженої графіком функції Строим графики функций y=3x^2; y=0; x=1; x=2. (См. скриншот).
Площадь S = ∫(a;b)f(x)dx.
Пределы интегрирования a = 1; b =2.
f(x) = 3x^2. Тогда
S =∫(1;2)(3x^2)dx = 3∫(1;2) (x^2)dx = 3 x^3/3|(1;2) = (2^3-1^3) = 8-1 = 7 кв. ед.
Приложения:

Новые вопросы
Немецкий язык,
7 месяцев назад
Математика,
7 месяцев назад
Другие предметы,
8 месяцев назад
Литература,
8 месяцев назад
География,
6 лет назад