Алгебра, вопрос задал Ismailova00 , 9 лет назад

Нужно доказать неравентсво
2а^2+b^2+c^2≥2a(b+c)

Ответы на вопрос

Ответил Матов
0
 
  2a^2+b^2+c^2geq2a(b+c) \
 2a^2+b^2+c^2 geq 2ab+2ac\
a^2+b^2-2ab+a^2+c^2-2ac geq 0\
 (a-b)^2+(a-c)^2 geq 0\
 
  
  
 Квадраты всегда положительны 
Новые вопросы