Алгебра, вопрос задал kunaevaaaaaa15 , 2 года назад

Номер 1832 f(x) =7^3-x^2 помогите пожалуйста срочно решить

Приложения:

Ответы на вопрос

Ответил mishka19
1

Ответ:

B)~-2x\cdot 7^{3-x^2}\cdot \ln{7}

Объяснение:

f(x)=7^{3-x^2} \\ \\f'(x)=(7^{3-x^2})'=7^{3-x^2}\cdot \ln{7}\cdot(3-x^2)'=7^{3-x^2}\cdot \ln{7}\cdot(3'-(x^2)')=\\\\=7^{3-x^2}\cdot \ln{7}\cdot(0-2x^{2-1})=7^{3-x^2}\cdot \ln{7}\cdot(0-2x^{1})=7^{3-x^2}\cdot \ln{7}\cdot(-2x)=\\\\=-2x\cdot 7^{3-x^2}\cdot \ln{7}

Новые вопросы