Математика, вопрос задал yuliana9421 , 2 года назад

Найти углы треугольника!
Пожалуйста срочно​

Приложения:

Ответы на вопрос

Ответил Andr1806
3

Ответ:

∠А = 18°, ∠В = 98° и ∠С = 64°.

Пошаговое объяснение:

При пересечении биссектрис двух углов треугольника, например, А и В, образуется треугольник АВО, в котором угол между биссектирсами при вершине О равен 58° или 122° (они смежные). Тогда (1/2)(∠А+∠В) = 122° (1) или 58° (2). Первый вариант неприемлем, так как тогда ∠А+∠В = 244°, что больше суммы трех углов треугольника.

Итак, (1/2)(∠А+∠В) = 58°  => ∠A+∠B = 116° => ∠C = 180°-116° = 64° (по сумме внутоенних углов треугольника).

В треугольнике АОВ1 ∠ОВ1А =73° (дано), так как вариант ∠ОВ1С=73° - противоречит теореме о сумме внутренних углов треугольника.

Тогда ∠ОАВ1 = 180° - (73° + 58°) = 9°. Но это - половина угла А треугольника АВС.

∠А = 2·9° = 18°.  =>

∠B = 116° - 18° = 98°. (Так как ∠A+B∠ = 116°).

Ответ: ∠А = 18°, ∠В = 98° и ∠С = 64°.

Приложения:
Новые вопросы