Найти точку максимума функции f(x)=x-1/3 * x^3
Ответы на вопрос
Ответил azoom
0
Нужно найти производную данной функции и приравнять к нулю:
1 - x^2 = 0. Решением данного уравнения являются корни x = -1 и x = 1.
Исследуем на возрастание, убывание исходную функцию:
при x = - 2 производная принимает отрицательное значение, значит функция в промежутке до точки x = -1 убывает.
при x = 0 производная принимает положительное значение, значит функция в промежутке от -1 до 1 возрастает.
при x = 2 производная принимает отрицательное значение, значит функция в промежутке от 1 до бесконечности убывает.
Следовательно точкой максимума является точка при x = 1.
Ответ - x=1
1 - x^2 = 0. Решением данного уравнения являются корни x = -1 и x = 1.
Исследуем на возрастание, убывание исходную функцию:
при x = - 2 производная принимает отрицательное значение, значит функция в промежутке до точки x = -1 убывает.
при x = 0 производная принимает положительное значение, значит функция в промежутке от -1 до 1 возрастает.
при x = 2 производная принимает отрицательное значение, значит функция в промежутке от 1 до бесконечности убывает.
Следовательно точкой максимума является точка при x = 1.
Ответ - x=1
Новые вопросы
Физика,
2 года назад
Алгебра,
2 года назад
Геометрия,
9 лет назад
Биология,
9 лет назад
Информатика,
9 лет назад