Геометрия, вопрос задал NikNek228 , 7 лет назад

Найти площадь прямоугольного треугольника ABC (∠C = 90°), если гипотенуза AB = 10, а высота CH = 6.

Ответы на вопрос

Ответил milashka9054
0

Ответ:

незнайка бабаба))))))))))'с

Ответил NikNek228
0
я то знаю как посчитать площадь треугольника, просто прикол в том, что такого треугольника не существует)))
Ответил nat59gut81
0
Вы приводите нас к истокам...к мысли, что прежде, чем решать любую задачу, надо проверить, существует ли треугольник?!
Ответил NikNek228
0
ну, на самом деле, я не редко встречал задачи, в которых заданого треугольника просто не существует
Ответил nat59gut81
0

Ответ:

Объяснение:    из пропорциональности в прямоугольном Δ→  СН^2=AH*BH  пусть АН=х, тогда ВН=(10-х)

подставим 36=х(10-х)     х^2-10x+36=0  уравнение не имеет решения, так как дискриминант Д<0

А...был ли треугольник?

Ответил bodan741
0
Если использовать формулу СH^2=AH*HB, AB=10, то за производной легко вычислить что максимальная длина перпендикуляра это 5. То есть автор прав.
Ответил NikNek228
0
takushnir, если мы продливаем CH в два раза то мы получаем хорду
Ответил takushnir
0
Я четко задал вопрос, но ответа на него не получил. При чем тут хорда, каким боком она стоит к шести? Это раз. И второе. Я о том, что сейчас пытается написать bodan741, писал в начале беседы. И третье. Зачем так долго ходить в лес по дрова, если они рядом?) Я всего лишь применил свойство высоты. А Вы от своего вопроса ушли в сторону. Зачем?
Ответил NikNek228
0
я не уходил в сторону, возможно я плохо объяснил, но не суть
Ответил NikNek228
0
забудь об этом, но если хотите, то могу все же объяснить
Новые вопросы