Математика, вопрос задал gyjhghjghjh , 7 лет назад

Найти площадь фигуры, ограниченной заданными линиями:

Приложения:

Ответы на вопрос

Ответил MeDi0N
0

Даны функции - параболы

1) Найдём координаты вершины параболы y=x²-2x-5

x=-b/(2a)=2/(2·1)=1

y=1²-2·1-5=-6

(1;-6) -координаты вершины этой параболы

теперь координаты вершины второй параболы y=-x²-x+1

x=-b/(2a)=1/(2·(-1))=-0,5

y=-(-0,5)²+0,5+1=1,25

(0,5; 1,25)- координаты вершины этой параболы

строим функции

найдём точки пересечения этих парабол

x^2-2x-5=-x^2-x+1

2x^2-x-6=0

D=1+48=49 √D=7

x_1=(1-7)/4=-1,5

x_2=8/4=2

Приложения:
Новые вопросы