Алгебра, вопрос задал CatherineCassil , 2 года назад

найти наибольшее возможное значение выражения 6cos(a) + 8sin(a)


Guerrino: используйте формулу доп. угла. ответ 10

Ответы на вопрос

Ответил Guerrino
0

Пусть \cos \alpha=x,\; \sin\alpha=y. Переформулируем задачу, сведя ее к параметру: найдите максимальное значение параметра a, при котором система \left \{ {{6x+8y=a} \atop {x^2+y^2=1}} \right. имеет хотя бы одно решение. Первое уравнение задает прямую y=\frac{a-6x}{8} в x0y, а второе — окружность с центром в начале координат радиусом 1. Заметим, что увеличивая a, мы поднимаем прямую, значит, максимальному a соответствует случай касания прямой и окружности.

OB=\frac{a}{8}, OA=\frac{a}{6}, OH=1. По теореме Пифагора найдем AB=\frac{5}{24}a. При этом, очевидно: AB\times OH=OB\times OA, подставляем: 5a/24\times 1=a^2/48 \Rightarrow  a=10.

Ответ: 10

Приложения:
Новые вопросы