Найти экстремумы функции.
y=2x^3-3x^2
Ответы на вопрос
Ответил nKrynka
0
Решение
y=2x^3-3x^2
Находим производную
6x^2 - 3
Приравниваем её к нулю (находим критические точки(
6x^2 - 3 = 0
6x^2 = 3
x^2 = 1/2
x1 = -1/√2
x2= 1/√2
Проверяем знаки производной при переходе через критические точки
+ - +
--------------------------------------------------------------------------------------------->
-1/√2 1/√2 х
При переходе через точку (-1/√2) производная меняет знак с (+) на (-). Значит точка (-1/√2) точка максимума.
уmax (-1√/2) = -1
При переходе через точку (1/√2) производная меняет знак с (-) на (+). Значит точка (1/√2) точка минимума.
уmin = (-1/√2)
.
y=2x^3-3x^2
Находим производную
6x^2 - 3
Приравниваем её к нулю (находим критические точки(
6x^2 - 3 = 0
6x^2 = 3
x^2 = 1/2
x1 = -1/√2
x2= 1/√2
Проверяем знаки производной при переходе через критические точки
+ - +
--------------------------------------------------------------------------------------------->
-1/√2 1/√2 х
При переходе через точку (-1/√2) производная меняет знак с (+) на (-). Значит точка (-1/√2) точка максимума.
уmax (-1√/2) = -1
При переходе через точку (1/√2) производная меняет знак с (-) на (+). Значит точка (1/√2) точка минимума.
уmin = (-1/√2)
.
Новые вопросы
Русский язык,
2 года назад
Алгебра,
2 года назад
Биология,
9 лет назад
Математика,
9 лет назад
Физика,
10 лет назад
История,
10 лет назад