Математика, вопрос задал никитос0404 , 7 лет назад

Найти частное решение уравнения yln(y)+xy'=0 при y(1)=e

Ответы на вопрос

Ответил pushpull
1

Ответ:

Пошаговое объяснение:

уже такое я решала. но искать лень. решу еще раз

yln(y)+xy'=0

y*lny = -x*y'

\displaystyle \frac{y'}{y*lny} =-\frac{1}{x}

\displaystyle \int {\frac{dy/dx}{y*lny} } \, dx =-\int {\frac{1}{x} } \, dx

\displaystyle ln(lny))=-ln(x)+C

\displaystyle y=e^{e^{C/x}}

переопрелелим переменные

\displaystyle y= e^{C_1/x}

y(1) = e    ⇒   C₁ = 1

\displaystyle y=e^{1/x}

ответ

\displaystyle y= \sqrt[\displaystyle x]{e}

Новые вопросы