Найдите значение выражения 4sin10°sin20° – 2cos10°.
Ответы на вопрос
Ответил oganesbagoyan
0
Найдите значение выражения 4sin10°sin20° – 2cos10°.
---
4sin20°sin10° – 2cos10° = 4(cos10° - cos30°) /2 - 2cos10° =
2cos10° - 2cos30° - 2cos10° = - 2cos30° = -2*(√3)/2 = - √3.
ответ : - √3.
* * * *
Преобразования произведения в сумму :
sinαsinβ = ( cos(α -β) - cos(α +β) ) /2 .
---
4sin20°sin10° – 2cos10° = 4(cos10° - cos30°) /2 - 2cos10° =
2cos10° - 2cos30° - 2cos10° = - 2cos30° = -2*(√3)/2 = - √3.
ответ : - √3.
* * * *
Преобразования произведения в сумму :
sinαsinβ = ( cos(α -β) - cos(α +β) ) /2 .
Новые вопросы
Кыргыз тили,
2 года назад
Математика,
2 года назад
Алгебра,
8 лет назад
Химия,
8 лет назад
География,
9 лет назад