найдите значение выражения 1-3 sin^2x, если cos2x = 0,9
Ответы на вопрос
Ответил AssignFile
1
Пригодится формула косинуса двойного угла: cos(2a) = 1 - 2 sin^2 (a)
1 - 3 sin^2 2x = 1 - 2 sin^2 2x - sin^2 2x = cos 2x - (1 - cos 2x)/2 =
= 0,9 - (1 - 0,9)/2 = 0,9 - 0,05 = 0,85
1 - 3 sin^2 2x = 1 - 2 sin^2 2x - sin^2 2x = cos 2x - (1 - cos 2x)/2 =
= 0,9 - (1 - 0,9)/2 = 0,9 - 0,05 = 0,85
Новые вопросы
Химия,
1 год назад
Физика,
1 год назад
Математика,
2 года назад
Математика,
2 года назад
Информатика,
7 лет назад