Геометрия, вопрос задал x1staner , 2 года назад

Найдите углы параллелограмма ABCD, если:
a) ∠A = 84°; б) ∠A - ∠B = 55°; в) ∠A+ ∠C = 142°; г) ∠А = 2∠В;
д) ∠CAD = 16, ∠ACD = 37°​

Ответы на вопрос

Ответил ildar50
45

Ответ: 62,5,  62,5,  117,5,  117,5.

Объяснение:

∠А=∠С=84*;

∠B=∠D=180*-84*=96*.

В сумме должны дать 360*.

84+84+96+96=360.!! Все точно. Как в аптеке...Удачи!!!

б) ∠A-∠B=55*. Обозначим угол В через х. Тогда  угол А равен х+55.

Сумма углов в четырехугольнике равна 360*. Составим уравнение:

(х+х+55)*2=360*;

4х=360-110;

4х=250;

x=62,5* - угол В;

62,5+55=117,5* - угол А.

В параллелограмме противоположные стороны и углы равны

****************************

в)  ∠А+∠С=142*;    ∠А=∠С = 142:2=71*;

∠В=∠D=180*-71*=109*;

***********************

г)  ∠А = 2∠В;  ∠В обозначим через х, то ∠А=2х;

В сумме все углы  дают 360*. Составим уравнение:

(х+2х)*2=360;

6х=360;

х=60* - угол В.

60*2=120* - угол А.

*************

д)  ∠CAD = 16, ∠ACD = 37°​;

∠B=∠D=180*-(16+37)=127*;

∠A=∠C=(360*-127*2)/2=53*.  

Как-то так... :)))  Удачи!  Надеюсь разберетесь...

Новые вопросы