Алгебра, вопрос задал joke1 , 10 лет назад

найдите сумму всех натуральных чисел, не превосходящих 250 и которые делятся на 6

Ответы на вопрос

Ответил feep
0

a1=6, d=6, an=246
n=(an-a1)/d + 1
n=(246-6)/6 + 1 = 41
S=(a1+an)n/2
S=(6+246)41/2=5166

Ответ: 5166

Ответил Anstisha
0

Самое большое число до 250, деляшееся на 6 - 246.

Значит, таких чисел - (246-6)/6 +1= 41.

Они составляют алгебраическую прогрессию, где а₁ = 6, а₄₁ = 246 и d = 6.

S₆ = (a₁ + a₄₁)/2 * 41 = 5166

Новые вопросы