Математика, вопрос задал 79051305030 , 8 лет назад

найдите первообразую функции y=x^2-2x-3 график которой проходит через точку (-1 ; 3)

Ответы на вопрос

Ответил mishka19
0

 y=x^2-2x-3\ \ F(x)=frac{x^{2+1}}{2+1}-2cdotfrac{x^{1+1}}{1+1}-3x+C=frac{x^3}{3}-2cdotfrac{x^2}{2}-3x+C=\     \ =frac{x^3}{3}-x^2-3x+C

Так как первообразная функции проходит через точку  (-1;3) , то  F(-1)=3 , значит,

 frac{(-1)^3}{3}-(-1)^2-3cdot(-1)+C=3\ \ -frac{1}{3}-1+3+C=3\  \ C=1+frac{1}{3}\  \ C=frac{4}{3}

Получаем, что  F(x)=frac{x^3}{3}-x^2-3x+frac{4}{3} =frac{1}{3} (x^3-3x^2-9x+4)

Ответ:  F(x)=frac{1}{3} (x^3-3x^2-9x+4)

Новые вопросы