найдите наибольшее значение функции y=ln(x+3)^2-2x на отрезке [-2,5;0]
Ответы на вопрос
Ответил Boddah
0
Найдем производную: y'=2/(x+3)-2
y'=0
2/(x+3)-2=0
2/(x+3)=2
1/(x+3)=1
x+3=1
x=-2
y(-2)=ln(-2+3)^2-2*(-2)=4
y'=0
2/(x+3)-2=0
2/(x+3)=2
1/(x+3)=1
x+3=1
x=-2
y(-2)=ln(-2+3)^2-2*(-2)=4
Новые вопросы
Математика,
2 года назад
Қазақ тiлi,
2 года назад
Обществознание,
10 лет назад
Алгебра,
10 лет назад
Химия,
10 лет назад