Найдите наибольшее и наименьшее значения заданной функции на заданном интервале:
а)y=-x^2 - 6x + 1 на (-∞;-2]
б)y=x^3 - 3x^2 - 9x + 1 на [1;+∞)
Ответы на вопрос
Ответил sedinalana
0
а)y=-x^2 - 6x + 1 на (-∞;-2]
y`=-2x-6
-2x-6=0
-2x=6x=-3
y(-3)=-9+18+1=10 наиб
y(-2)=-4+12+1=9 наим
б)y=x^3 - 3x^2 - 9x + 1 на [1;+∞)
y`=3x²-6x-9
3(x²-2x-3)=0
x1+x2=2 U x1*x2=-3
x1=3 U x2=-1∉[1;∞)
у(1)=1-3-9+1=-10 наиб
у(3)=27-27-27+1=-26 наим
y`=-2x-6
-2x-6=0
-2x=6x=-3
y(-3)=-9+18+1=10 наиб
y(-2)=-4+12+1=9 наим
б)y=x^3 - 3x^2 - 9x + 1 на [1;+∞)
y`=3x²-6x-9
3(x²-2x-3)=0
x1+x2=2 U x1*x2=-3
x1=3 U x2=-1∉[1;∞)
у(1)=1-3-9+1=-10 наиб
у(3)=27-27-27+1=-26 наим
Ответил sedinalana
0
2
а)y=-x^2 - 6x + 1 на (-∞;-2]
y`=-2x-6
-2x-6=0
-2x=6
x=-3
+ -
-------------------(-3)-----------[-2]
max
y(-3)=-9+18+1=10 наиб
yнаим -нет
б)y=x^3 - 3x^2 - 9x + 1 на [1;+∞)
y`=3x²-6x-9
3(x²-2x-3)=0
x1+x2=2 U x1*x2=-3
x1=3 U x2=-1∉[1;∞)
_ +
[1]---------------------(3)------------------------
min
унаиб -нет
у(3)=27-27-27+1=-26 наим
а)y=-x^2 - 6x + 1 на (-∞;-2]
y`=-2x-6
-2x-6=0
-2x=6
x=-3
+ -
-------------------(-3)-----------[-2]
max
y(-3)=-9+18+1=10 наиб
yнаим -нет
б)y=x^3 - 3x^2 - 9x + 1 на [1;+∞)
y`=3x²-6x-9
3(x²-2x-3)=0
x1+x2=2 U x1*x2=-3
x1=3 U x2=-1∉[1;∞)
_ +
[1]---------------------(3)------------------------
min
унаиб -нет
у(3)=27-27-27+1=-26 наим
Новые вопросы
Русский язык,
2 года назад
Русский язык,
2 года назад
Математика,
8 лет назад
Обществознание,
8 лет назад
Обществознание,
9 лет назад