Найдите наибольшее и наименьшее значения функции
y=2cos2x+
x
Ответы на вопрос
Ответил moboqe
0
y=2cos(2x)+cos^2(x)
y'= -4sin(2x)-2cosx*sinx
y'= -sin(2x)-4sin(2x)
y'= -5sin(2x)
-5sin(2x)=0
sin(2x)=0
2x=pi*n, n∈Z
x=1/2*pi*n, n∈Z // экстремум
x0=pi/2 - точка минимума
min y=y(x0)=2cos(pi)+cos^2(pi/2)= -2
y'= -4sin(2x)-2cosx*sinx
y'= -sin(2x)-4sin(2x)
y'= -5sin(2x)
-5sin(2x)=0
sin(2x)=0
2x=pi*n, n∈Z
x=1/2*pi*n, n∈Z // экстремум
x0=pi/2 - точка минимума
min y=y(x0)=2cos(pi)+cos^2(pi/2)= -2
Новые вопросы