найдите наибольшее и наименьшее значение функции у=х^2(6-х) на отрезке [-1;5]
Ответы на вопрос
Ответил Настюта
0
у=х^2(6-х) Найдем производную y'=2x(6-x)+
*(-1)=12x-2
-
=12x-3
Приравниваем к 0
12x-3
=0
3x(4-x)=0
3x=0 или 4-x=0
x=0 x=4
Оба значения входят в отрезок [-1;5], поэтому подставим их в функцию
y(-1)=1*7=7
y(0)=0
y(4)=16*2=32
y(5)=25*1=25
Ответ: y наибольшее=32, у наименьшее=0
Приравниваем к 0
12x-3
3x(4-x)=0
3x=0 или 4-x=0
x=0 x=4
Оба значения входят в отрезок [-1;5], поэтому подставим их в функцию
y(-1)=1*7=7
y(0)=0
y(4)=16*2=32
y(5)=25*1=25
Ответ: y наибольшее=32, у наименьшее=0
Новые вопросы