Найдите четыре числа, которые образуют геометрическую прогрессию, если первый член больше третьего на 6, а второй меньше четвертого на 3. Буду благодарна, если распишите подробно
Ответы на вопрос
Ответил Pacanka202
0
b1–b3=6
b4–b2=3
b1–b1•q^2=6
b1•q^3–b1•q=3
b1(1–q^2)=6
–b1•q(1–q^2)=3
–1/q=2
2q=–1
q=–1/2
b1=6:(1–q^2)=6:(1–1/4)=6:3/4=8
b2=b1•q=8•(-1/2)=–4
b3=b1•q^2=8•1/4=2
b4=b1•q^3=8•(-1/8)=–1
b4–b2=3
b1–b1•q^2=6
b1•q^3–b1•q=3
b1(1–q^2)=6
–b1•q(1–q^2)=3
–1/q=2
2q=–1
q=–1/2
b1=6:(1–q^2)=6:(1–1/4)=6:3/4=8
b2=b1•q=8•(-1/2)=–4
b3=b1•q^2=8•1/4=2
b4=b1•q^3=8•(-1/8)=–1
Ответил vbakalina
0
Спасибо большое. Но объясните, пожалуйста, как получилось
–1/q=2
–1/q=2
Ответил Pacanka202
0
Разделили первое уравнение на второе, b1 и (1–q^2) сократились, остался q в знаменателе и минус
Новые вопросы
Математика,
2 года назад
Химия,
2 года назад
Математика,
8 лет назад
Алгебра,
8 лет назад
Математика,
9 лет назад