Математика, вопрос задал julus0304 , 7 лет назад

Натуральные числа a и b таковы, что ab - 1 делится на b + 1. Докажите, что a>b​

Ответы на вопрос

Ответил igorShap
0

Поправка: Натуральные числа a и b таковы, что ab - 1 делится на b + 1. Докажите, что ab​

Предположим, что a<b

(ab-1)vdots(b+1), a(b+1)vdots(b+1)=&gt;a(b+1)-(ab-1)=ab+a-ab+1=(a+1)vdots(b+1)=&gt;exists cin N;;;a+1=c(b+1)\ a&lt;b=&gt;c(b+1)&lt;b+1=&gt; (c-1)(b+1)&lt;0\ b+1&gt;0=&gt;c-1&lt;0=&gt;c&lt;1\ cin N=&gt;cin o

Предположение неверно.

При этом, например, для a=b=2 ;;;ab-1=3vdots 3=2+1\ ageq b

Ч.т.д.

Новые вопросы