на основании AD и BC трапеции ABCD равны соответственно 70 и 20 На стороне CD выбрана. м так что cm / MD равняется 3 / 7 Найдите отрезки на которые прямая AM разделили среднюю линию трапеции ABCD
ДАЙТЕ РАССПИСАНЫЙ ОТВЕТ
Ответы на вопрос
Рассмотрим отрезки, на которые делится сторона CD. Эту сторону можно представить как сумму CM + MD и как сумму CE + ED.
MD = 7/10CD (CM/MD = 3/7 ⇒ MD/(CM + MD) = 7/(3 + 7) = 7/10)
ED = 1/2CD (так как средняя линия делит сторону CD пополам)
ME = 7/10CD - 1/2CD = 7/10CD - 5/10CD = 2/10 CD
Так как мы выразили и отрезок ME, и отрезок MD через сторону CD, можно найти отношение этих отрезков друг к другу. ME/MD = 2/10 : 7/10 = 2 : 7.
Рассмотрим ΔMOE и ΔMAD. У них есть общий угол (∠AMD), а также равные углы ∠MEO и ∠MDA (соответственные при FE ║ AD – они параллельны, так как средняя линия трапеции всегда параллельна её основаниям), равные углы ∠MOE и ∠MAD (также соответственные при FE ║ AD). Таким образом, ΔMOE ~ ΔMAD по трём углам.
В подобных треугольниках соответствующие стороны относятся друг к другу в одинаковых пропорциях. Мы знаем это отношение – 2 : 7, так относятся друг к другу стороны ME малого треугольника и MD большого. Зная сторону AD, мы можем найти и сторону OE.
OE/AD = 2/7
OE/70 = 2/7
OE = 20
Средняя линия трапеции всегда равна половине суммы её оснований.
FE = (BC + AD) : 2 = (20 + 70) : 2 = 90 : 2 = 45.
Зная длину FE и её части отрезка OE, мы можем найти отрезок FO.
FO = FE - OE = 45 - 20 = 25.
Ответ: 20 и 25 сантиметров.
