можно ли подобрать такие четыре различных натуральных числа, чтобы сумма любых двух из них была степенью 3.
xohigad855:
Ответ: нет.
Ответы на вопрос
Ответил yugolovin
1
Пусть a+b, a+c и b+c являются степенями тройки.
Тогда (a+b)+(a+c)=2a+(b+c); слева стоит четное число (степени тройки являются нечетными числами, сумма двух нечетных чисел является четным числом), а справа стоит нечетное число как сумма четного и нечетного. Это противоречие показывает, что даже три натуральных числа нельзя подобрать так, чтобы сумма любых двух из них была степенью 3 (а по сути нельзя подобрать так, чтобы сумма любых двух из них была нечетным числом).
Новые вопросы
Математика,
2 года назад
Другие предметы,
2 года назад
Английский язык,
7 лет назад
История,
8 лет назад