Катеты прямоугольного треугольника. Катеты прямоугольного треугольника равны 15 и 20 см.Из вершины прямого угла проведена биссектриса.На какие отрезки разделилась гипотенуза?
Ответы на вопрос
Ответил Trover
0
Есть теорема о биссектрисе. Воспользуемся её доказательством для решения задачи.
ABC - прямоугольный треугольник, AC = 15 см, BC = 20 см. CD - биссектриса.
Через вершину B проведём отрезок, параллельный биссектрисе CD, и продолжим сторону AC до пересечения данного отрезка в точке E (см. рис.).
как накрест лежащие при параллельных CD и BE и секущей BC.
как соответственные при параллельных CD и BE и секущей AE.
Следовательно, треугольник BCE равнобедренный, BC = CE = 20 см.
По теореме Фалеса

Гипотенуза делится на 7 частей, из них 3 части - отрезок AD, 4 части - отрезок BD.
Из треугольника ABC по т.Пифагора найдём длину гипотенузы AB
см.
см.
см.
ABC - прямоугольный треугольник, AC = 15 см, BC = 20 см. CD - биссектриса.
Через вершину B проведём отрезок, параллельный биссектрисе CD, и продолжим сторону AC до пересечения данного отрезка в точке E (см. рис.).
Следовательно, треугольник BCE равнобедренный, BC = CE = 20 см.
По теореме Фалеса
Гипотенуза делится на 7 частей, из них 3 части - отрезок AD, 4 части - отрезок BD.
Из треугольника ABC по т.Пифагора найдём длину гипотенузы AB
Приложения:

Новые вопросы
Русский язык,
2 года назад
Химия,
2 года назад
Математика,
9 лет назад
Химия,
9 лет назад
История,
10 лет назад