Математика, вопрос задал plm500 , 8 лет назад

какое какое наибольшее количество чисел от 1700 до 2300 крайние числа включительно можно выбрать так что сумма никаких двух из них не делится на 5

Ответы на вопрос

Ответил nelle987
0
- Чисел, делящихся на 5, может быть не более одного, иначе сумма двух чисел, делящихся на 5, будет делиться на 5.

- Если выбрано хоть одно число, дающее остаток 1 при делении на 5, то не должны быть выбраны числа, дающие остаток 4 при делении на 5, и наоборот.

- Если выбрано хоть одно число, дающее остаток 2 при делении на 5, то не должны быть выбраны числа, дающие остаток 3 при делении на 5, и наоборот.

Чисел, дающих остаток 0 при делении на 5: 2300/5 - 1700/5 + 1 = 460 - 340 + 1 = 121, и их на 1 больше, чем с каждым ненулевым остатком.

Итак, можно взять не более одного числа, делящегося на 5, не более половины из 240 с остатками 1 или 4, не более половины из 240 с остатками 2 или 3. Тогда можно выбрать не больше, чем 1 + 120 + 120 = 241 число.

Оценка достигается, например, если выбрать все числа с остатками 1 и 3 и число 2000.

Ответ. 241
Новые вопросы