Как определить,сколько решений имеет система уравнений,и дайте геометрическое объяснение выводу,на примере пожалуйста.
Ответы на вопрос
Ответил anmih
0
Если даны два уравнения первой степени в системе с двумя неизвестными и все коэффициенты при переменных не пропорциональны между собой, то система имеет единственное решения и геометрический смысл в том, что прямые пересекаются ( в данном случае)
Например:
Система:
2х+у=5
х+у=2
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты и свободное число одного уравнения получаются делением или умножением соответствующих коэффициентов и свободного числа другого уравнения, то система имеет бесконечно много решений и геометрический смысл в том, что прямые совпадают ( в данном случае)
Например:
Система:
2х+у=5
4х+2у=10
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты одного уравнения получаются делением или умножением соответствующих коэффициентов другого уравнения, а свободные числа нет, то система не имеет решений (пустое множество решений) и геометрический смысл в том, что прямые параллельны ( в данном случае)
Например:
Система:
2х+у=5
4х+2у=7
Например:
Система:
2х+у=5
х+у=2
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты и свободное число одного уравнения получаются делением или умножением соответствующих коэффициентов и свободного числа другого уравнения, то система имеет бесконечно много решений и геометрический смысл в том, что прямые совпадают ( в данном случае)
Например:
Система:
2х+у=5
4х+2у=10
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты одного уравнения получаются делением или умножением соответствующих коэффициентов другого уравнения, а свободные числа нет, то система не имеет решений (пустое множество решений) и геометрический смысл в том, что прямые параллельны ( в данном случае)
Например:
Система:
2х+у=5
4х+2у=7
Новые вопросы
Математика,
2 года назад
Математика,
2 года назад
Геометрия,
9 лет назад
Математика,
9 лет назад
История,
10 лет назад