Как доказать монотонность функции
Ответы на вопрос
Ответил sheriff020
0
Взять производную.
Если она всегда положительна - функция монотонно возрастает. Отрицательна - убывает.
Только производные обычно в 9 классе не проходят. .
Тогда ты можешь просто доказать вот что: дана f(x), если x1>x2, то f(x1)>f(x2) - если это верно для любых x, то функция монотонно возрастает. Для убывания:
x1>x2, f(x1)
Если она всегда положительна - функция монотонно возрастает. Отрицательна - убывает.
Только производные обычно в 9 классе не проходят. .
Тогда ты можешь просто доказать вот что: дана f(x), если x1>x2, то f(x1)>f(x2) - если это верно для любых x, то функция монотонно возрастает. Для убывания:
x1>x2, f(x1)
Новые вопросы
Математика,
2 года назад
Английский язык,
2 года назад
Математика,
8 лет назад
История,
8 лет назад
Геометрия,
9 лет назад