Геометрия, вопрос задал opasna1 , 7 лет назад

Известно, что в выпуклом четырехугольнике
углы BAD и BCD — тупые. Докажите, что AC < BD.
Вроде как нужна вспомогательная окружность.

Ответы на вопрос

Ответил vikusenok44
0

Т.к. ABCD выпуклый и ∠ABD = ∠ACD, получаем, что около четырёхугольника ABCD можно описать окружность. А тогда ∠DAC = ∠DBC как вписанные углы, которые опираются на одну дугу CD.

Новые вопросы