Алгебра, вопрос задал wikagriz9755 , 1 год назад

Известно, что в геометрической прогресии: b₁ = ¼, b5=20¼. Найдите сумму первых шести членов этой прогрессии ​

Ответы на вопрос

Ответил sangers1959
1

Объяснение:

\displaystyle\\b_1=\frac{1}{4} \\b_5=b_*q^4=\frac{1}{4}*q^4=20\frac{1}{4}=\frac{81}{4}  \ \ \ \ \ \  \\\\\frac{q^4}{4} =\frac{81}{4}\ |*4\\\\q^4=81\\\\q^4=3^4\\\\q=3.\\\\S_6=\frac{1}{4} *\frac{3^6-1}{3-1}=\frac{729-1}{4*2}=\frac{728}{8}=91.

Ответ: S₆=91.

Новые вопросы