Если производные графиков равны ,то и функции равны ? Что характеризует равенство производных? Забыл.....
Ответы на вопрос
Ответил 9171906
0
насколько я помню, производная - тангенс угла наклона касательной к графику функции (отношение приращений функции и аргумента ). - в общем 1)-НЕТ. с какого перепуга производная функции у=0 равна производной у=100 обе =0, но функции не равны. равенство производных характеризует, что они одинаково убывают(возрастают) в данной точке.
про производные - построй в мозге треугольничек в системе координат со сторонами Х, =Х+ΔХ, У=У+ΔУ и третья сторона - собственно график функции(касательная). так вот приозводная - это когда tg - делишь У на Х. если график(касательная) в этой точке горизонтальна - производная равна 0 и функция не возрастает и не убывает. итп
про производные - построй в мозге треугольничек в системе координат со сторонами Х, =Х+ΔХ, У=У+ΔУ и третья сторона - собственно график функции(касательная). так вот приозводная - это когда tg - делишь У на Х. если график(касательная) в этой точке горизонтальна - производная равна 0 и функция не возрастает и не убывает. итп
Новые вопросы
Українська мова,
2 года назад
Математика,
2 года назад
Информатика,
9 лет назад
Математика,
9 лет назад
Математика,
9 лет назад