Докажите, что выражение: a^2+8а+25 может принимать лишь положительные значения
Ответы на вопрос
Ответил manyny06
6
а²+8а+25 = а²+2*4а+16 + 9= (а+4)² + 9 > 0 при любом значении а, т.е. что и требовалось доказать
Ответил elena10201
1
a²+8a+25=0
D=b²-4ac=64-4*25*1=64-100=-36.при этом условии уравнение не имеет корней в области действительных чисел. Графиком данной данной функции является парабола , ветви ее направлены вверх, тк коэффициент при а² положительный,те 1. график не пересекает ось Ох ,тк Д∠0,следовательно область значений этого трехчены только положительные числа.
D=b²-4ac=64-4*25*1=64-100=-36.при этом условии уравнение не имеет корней в области действительных чисел. Графиком данной данной функции является парабола , ветви ее направлены вверх, тк коэффициент при а² положительный,те 1. график не пересекает ось Ох ,тк Д∠0,следовательно область значений этого трехчены только положительные числа.
Новые вопросы
Математика,
1 год назад
Математика,
1 год назад
Английский язык,
2 года назад
Окружающий мир,
2 года назад
История,
7 лет назад