Докажите что всякое число n принадлежит N является составным числом значение выражения:
а) n^2+7n+12
б) 2n^2+11n+12
Ответы на вопрос
Ответил Аноним
2
a) n² + 7n + 12 = n² + 3n + 4n + 12 = n(n+3) + 4(n+3) = (n+3)(n+4)
Как видим, данное выражение можно разложит на множители и имеет более 2 делителей ⇒ число составное при n ∈ N
б) 2n² + 11n + 12 = 2n² + 8n + 3n + 12 = 2n(n+4) + 3(n+4) = (n+4)(2n+3)
Аналогично с рассуждением первого примера для всех n ∈ N выражение имеет более 2 делителя ⇒ число составное
Новые вопросы
Математика,
1 год назад
Литература,
2 года назад
Українська мова,
2 года назад
Алгебра,
7 лет назад
Химия,
7 лет назад