Докажите, что сумма кубов двух последовательных натуральных чисел делится на 3.
Ответы на вопрос
Ответил ак74м
0
Главная формула для доказательства (a+b)3=a3+3a2b+3ab2+b3
Доказать, что Х в кубе + (Х+1) в кубе + (Х + 2) в кубе делится на 3. В итоге получим сумму слагаемых, каждое из которых делится на 3. Пишу, как это написано в формуле выше - Х3 + (Х3 + 3Х2 + 3Х +1) + (Х3 + 6Х2 +12Х + 8) = 3(Х3 + 3Х2 + 5Х + 3)
Доказать, что Х в кубе + (Х+1) в кубе + (Х + 2) в кубе делится на 3. В итоге получим сумму слагаемых, каждое из которых делится на 3. Пишу, как это написано в формуле выше - Х3 + (Х3 + 3Х2 + 3Х +1) + (Х3 + 6Х2 +12Х + 8) = 3(Х3 + 3Х2 + 5Х + 3)
Новые вопросы
Українська мова,
2 года назад
Математика,
2 года назад
Математика,
9 лет назад
Математика,
9 лет назад
Физика,
9 лет назад
Химия,
9 лет назад