Докажите, что для каждого натурального числа n найдется число, в записи которого есть только нули и единицы, и которое делится нацело на n.
P.S. Если вдруг есть контрпример или утверждение верно не для всех n(то есть если есть доказательство, что условие задания неверно), достаточно привести его.
Ответы на вопрос
Ответил spasibo3pajbrh
0
Рассмотрим последовательность из (n+1) числа.
1, 11, 111, ....., 111..111 (n+1 единиц) (*)
При делении любого натурального числа на n мы можем получить один из остатков:
0 ( деление без остатка),1,2,...,n-1
Рассмотрим n ячеек и пронумеруем их остатками при делении на n:
0,1,2....n-1
Тогда, согласно принципу Дирихле,
при раcпределении (n+1) чисел (*) по этим ячейкам найдется ячейка, в которой окажутся , по крайней мере два числа
А и B (A>B), т.к. число распределяемых чисел (n+1) больше чем ячеек n.
А это будет означать, что числа А и В будут иметь одинаковые остатки при делении на n.
Из чего следует, что их разность будет нацело делиться на n:
Пусть А=11...1 (k единиц) B=11..1 (m единиц)
A-B = 11..1-11...1=11...100..0 ( в полученной десятичной записи разности
(k-m) единиц, m нулей)
и эта разность будет делиться на n
Таким образом, мы доказали существование натурального числа , кратного n , в десятичной записи которого встречаются лишь нули и единицы.
1, 11, 111, ....., 111..111 (n+1 единиц) (*)
При делении любого натурального числа на n мы можем получить один из остатков:
0 ( деление без остатка),1,2,...,n-1
Рассмотрим n ячеек и пронумеруем их остатками при делении на n:
0,1,2....n-1
Тогда, согласно принципу Дирихле,
при раcпределении (n+1) чисел (*) по этим ячейкам найдется ячейка, в которой окажутся , по крайней мере два числа
А и B (A>B), т.к. число распределяемых чисел (n+1) больше чем ячеек n.
А это будет означать, что числа А и В будут иметь одинаковые остатки при делении на n.
Из чего следует, что их разность будет нацело делиться на n:
Пусть А=11...1 (k единиц) B=11..1 (m единиц)
A-B = 11..1-11...1=11...100..0 ( в полученной десятичной записи разности
(k-m) единиц, m нулей)
и эта разность будет делиться на n
Таким образом, мы доказали существование натурального числа , кратного n , в десятичной записи которого встречаются лишь нули и единицы.
Новые вопросы
Математика,
2 года назад
Русский язык,
2 года назад
Химия,
8 лет назад
Математика,
8 лет назад
Математика,
9 лет назад