Докажите что четырехугольник ABCD с вершинами A(4;2;1) B(3;-1;0) C(-6;-2;5) D(-5;1;6) параллелограмм
Ответы на вопрос
Ответил dnepr1
0
Дан четырехугольник ABCD с вершинами:
A(4;2;1), B(3;-1;0), C(-6;-2;5), D(-5;1;6).
Признак параллелограмма- равенство и параллельность противоположных сторон.
Находим длины сторон.
АВ = √(-1)²+(-3)²+(-1)²) = √11 ≈ 3,3166248.
ВС = √(-9)²+(-1)²+5²) = √107 ≈ 10,3440804.
СД = √(1²+3²+1²) = √11 ≈ 3,3166248.
АД √((-9)²+(-1)²+5²) = √107 ≈ 10,3440804.
Отсюда видно, что условие равенства сторон соблюдено.
Кроме того, видно, что разность координат по осям Ох, Оу и Оz у противоположных сторон одинакова.,Это доказательство параллельности этих сторон.
A(4;2;1), B(3;-1;0), C(-6;-2;5), D(-5;1;6).
Признак параллелограмма- равенство и параллельность противоположных сторон.
Находим длины сторон.
АВ = √(-1)²+(-3)²+(-1)²) = √11 ≈ 3,3166248.
ВС = √(-9)²+(-1)²+5²) = √107 ≈ 10,3440804.
СД = √(1²+3²+1²) = √11 ≈ 3,3166248.
АД √((-9)²+(-1)²+5²) = √107 ≈ 10,3440804.
Отсюда видно, что условие равенства сторон соблюдено.
Кроме того, видно, что разность координат по осям Ох, Оу и Оz у противоположных сторон одинакова.,Это доказательство параллельности этих сторон.
Новые вопросы
Английский язык,
2 года назад
Русский язык,
2 года назад
Математика,
8 лет назад
Математика,
8 лет назад
Математика,
9 лет назад