доказать, что функция является четной:y=x^2cosx
Ответы на вопрос
Ответил alfabetta
1
у(х)=у(-х)- четная
Проверим:
у(х)=х^2cosx
у(-х)=(-х)^2cos(-х)=х^2соsх, т.к. (-х)(-х)=х^2 и cos(-х)=cosх
Получили у(х)=у(-х)
Проверим:
у(х)=х^2cosx
у(-х)=(-х)^2cos(-х)=х^2соsх, т.к. (-х)(-х)=х^2 и cos(-х)=cosх
Получили у(х)=у(-х)
Новые вопросы