диагонали ромба равны 7 см и 2.4 см найти его P,S
Ответы на вопрос
Ответил Julia1508
0
1. S ромба = половина произведения диагоналей
S=(d1*d2)/2=(7*2,4)/2=8,4(см^2)
2. P = сумма всех сторон, у ромба все сторона равны.
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
7:2=3,5 (см) - половина одной диагонали
2,4:2=1,2 (см) - половина другой диагонали
Тогда сторона ромба (по теореме Пифагора) = корень из (3,5^2+1,2^2)= корень из(13,69) = 3,7 см
Р = 4 * 3,7 = 14,8 см
Ответ: P = 14,8 см S = 8,4 см^2
S=(d1*d2)/2=(7*2,4)/2=8,4(см^2)
2. P = сумма всех сторон, у ромба все сторона равны.
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
7:2=3,5 (см) - половина одной диагонали
2,4:2=1,2 (см) - половина другой диагонали
Тогда сторона ромба (по теореме Пифагора) = корень из (3,5^2+1,2^2)= корень из(13,69) = 3,7 см
Р = 4 * 3,7 = 14,8 см
Ответ: P = 14,8 см S = 8,4 см^2
Новые вопросы
Английский язык,
2 года назад
Математика,
9 лет назад
Алгебра,
9 лет назад
Литература,
10 лет назад
Литература,
10 лет назад