Математика, вопрос задал эпик154 , 1 год назад

Дам 100 БАЛЛОВ, пж решите

Приложения:

Ответы на вопрос

Ответил сок111213
0

8.

 \sin( \alpha )  \cos( \alpha )  = 0.2 \\  \sin( \alpha )  + \cos( \alpha ) =   \: ?   \\  \\ ( \sin( \alpha )  +  \cos( \alpha ) ) {}^{2}  =  \sin {}^{2} ( \alpha )  + 2 \sin( \alpha )    \cos {}^{} ( \alpha )  +  \cos {}^{2} ( \alpha )  \\  = 1 + 2 \sin( \alpha )  \cos( \alpha )  = 1 + 2 \times 0.2 = 1 + 0.4 = 1.4 \\ 1) \:  \sin( \alpha )  +  \cos( \alpha )  =  -  \sqrt{1.4}  \\ 2) \:  \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{1.4}

9.

 \sin( \alpha ) -   \cos( \alpha  )  = 0.7 \\  \sin {}^{4} ( \alpha )   - \cos {}^{4} ( \alpha )  =  \:  ?  \\ \\  \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )  = ( \sin {}^{2} ( \alpha )   - \cos {}^{2} ( \alpha ) )( \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) ) =  \\  =  \sin {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha )  = ( \sin( \alpha )  -  \cos( \alpha )  )( \sin( \alpha )   + \cos( \alpha ) ) =  \\  = 0.7( \sin( \alpha )  +  \cos( \alpha )  )\\  \\ ( \sin( \alpha )    -  \cos( \alpha ) ) {}^{2}  =  \sin {}^{2} ( \alpha )   -  2 \sin( \alpha )  \cos( \alpha )  +   \cos {}^{2} ( \alpha )  =  \\0.49  = 1  -  2 \sin( \alpha )  \cos( \alpha )  \\ 2 \sin( \alpha )  \cos( \alpha )  = 1 - 0.49 \\ 2 \sin( \alpha )  \cos(a)  = 0.51  \\  \\  (\sin( \alpha )  +  \cos( \alpha ) ) {}^{2}  =  \sin {}^{2} ( \alpha )    + 2 \sin( \alpha )  \cos( \alpha ) +   \cos {}^{2} ( \alpha )  =  \\  = 1 + 2 \sin( \alpha )  \cos( \alpha )  = 1 + 0.51= 1.51 \\   \\ 1) \: \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{1.51}  \\  \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )  = 0.7 \times  \sqrt{1.51}  \\ \\  2) \: \sin( \alpha )  +  \cos( \alpha )  =  -  \sqrt{1.51}  \\  \sin {}^{4} ( \alpha )  -  \cos {}^{4} ( \alpha )  = 0.7 \times ( -  \sqrt{1.51} ) =  - 0.7 \times  \sqrt{1.51}

10.

\cos( \alpha )  \sin( \alpha )  = 0.4 \\  2\cos( \alpha )   \sin( \alpha ) = 0.8 \\  \cos {}^{3} ( \alpha )   + \sin {}^{3} ( \alpha )  =   \: ?  \\  \\ \cos {}^{3} ( \alpha )  +   \sin {}^{3} ( \alpha )   = ( \sin {}^{} ( \alpha )  +  \cos {}^{} ( \alpha ) ) ( \sin {}^{2} ( \alpha ) -  \sin( \alpha ) \cos( \alpha ) +  \cos {}^{2} ( \alpha )) =  \\  = ( \sin( \alpha )    +  \cos( \alpha ) )(1 - 0.4) = 0.6( \sin( \alpha ) +  \cos( \alpha )    )\\  \\ ( \sin( \alpha )  +  \cos( \alpha ) ) {}^{2}  =  \sin {}^{2} ( \alpha )  + 2 \sin( \alpha )  \cos( \alpha )  +  \cos {}^{2} ( \alpha )  =  \\  = 1 + 0.8 = 1.8 \\ \\  1) \:  \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{1.8} \\  \cos {}^{3} ( \alpha )  +  \sin {}^{3} ( \alpha )  = 0.6 \times  \sqrt{1.8}  \\  \\ 2) \:  \sin( \alpha )  +  \cos( \alpha )  =  -  \sqrt{1.8}  \\  \cos {}^{3} ( \alpha )  +  \sin {}^{3} ( \alpha )  = 0.6 \times ( -  \sqrt{1.8} ) =  - 0.6 \times  \sqrt{1.8}

Приложения:
Новые вопросы