Геометрия, вопрос задал natali061261 , 10 лет назад

Через точку C, лежащую вне окружности с центром , проведены две секущие к этой окружности. Одна из них пересекает окружность в точках A и B (B лежит между А и С ), а вторая проходит через точку О и пересекает окружность в точках P и Q (Q между С и P ). Найдите угол ACР,   если OAP равен 72 градусам, а отрезок BC равен радиусу окружности.

Ответы на вопрос

Ответил cos20093
0
Пусть искомый угол ACP = α; 
Треугольник CBO равнобедренный, поэтому угол BOC = α; отсюда угол CAQ = α/2; поэтому, как внешний угол треугольника CAQ, угол AQP = 3α/2; это вписанный угол, опирающийся на дугу AP.
Центральный угол, опирающийся на ту же дугу AP - это угол AOP, поэтому он равен 3α;
Треугольник AOP - равнобедренный, то есть угол OPA = угол OAP = 72
° (по условию); откуда угол AOP = 36°; 
3
α = 36°;
α = 12°;
Ответил shom4937
0
Почему угол AQP = 3a/2?
Новые вопросы