Математика, вопрос задал рокси, 8 лет назад

боря купил 4 книги. все книги без первой стоят 42 руб, без второй 40 руб, без третьей 38 руб, без четвертой 36 руб. сколько стоит каждая книга?

Добавить свой ответ

Ответы на вопрос

Ответил troleg
0

Пусть Х - цена первой книги, Y - второй, Z - третьей, а V - четвертой.

Получаем систему уравнений

Y + Z + V  = 42

X + Z + V = 40

X + Y + V = 38

X + Y + Z = 36

Сложив все уравнения системы, получаем

3 * X + 3 * Y + 3 * Z + 3 * V = 156 ,  откуда  X + Y + Z + V = 52 .

Итак, вс екниги вместе стоят 52 рубля. Тогда первая  52 - 42 = 10 руб,

вторая  52 - 40 = 12 руб, третья  52 - 38 = 14 руб  и четвертая  52 - 36 = 16 руб.

 

Ответил ali07
0

x руб. стоит первая книга, y руб стоит вторая книга, z руб. стоит третья книга, c руб стоит четвертая книга, составим систему уравнений:

y + z + c = 42

x + z + c = 40

x + y + c = 38

x + y + z = 36

сложим все эти уравнения, получим: 

 

y + z + c + x + z + c + x + y + c + x + y + z = 42 + 40 + 38 + 36

 

3x + 3y + 3z + 3c = 156

3 (x + y + z + c) = 156

x + y + z + c = 52 рубля стоит вся покупка, следовательно

х = 52 - (y + z + c) = 52 - 42 = 10 рублей стоит первая книга

у = 52 - (x + z + c) = 52 - 40 = 12 рублей стоит вторая книга

z = 52 - (x + y + c) = 52 - 38 = 14 рублей стоит третья книга

с = 52 - (x + y + z) = 52 - 36 = 16 рублей стоит четвертая книга 

 

 

 

 

 

 

Новые вопросы