Геометрия, вопрос задал sfejka , 2 года назад

Биссектрисы углов А и D параллелограмма ABCD пересеклись на стороне ВС. Найдите
отношение соседних сторон параллелограмма.
ответ: 1:2 или 2:1
нужно решение,помогите пожалуйста

Ответы на вопрос

Ответил mclp
9
Пусть биссектрисы пересеклись в точке K. (см. вложение) Тогда угол BAK равен углу KAD, так как AK-биссектриса; угол KAD равен углу BKA как внутренние накрест лежащие при параллельных прямых BC и AD и секущей AK. Значит, углы BAK и BKA - равны, следовательно, треугольник ABK - равнобедренный (по признаку), и BA=BK. Аналогично доказывается, что KC=CD. Но AB=CD, т.к. ABCD-параллелограмм. Значит, BC=BK+KC=AB+CD=AB+AB=2*AB. То есть,  \frac{BC}{AB} = \frac{2}{1}
Приложения:
Новые вопросы