Геометрия, вопрос задал mstepanuk90 , 2 года назад

Більша основа рівнобічної трапеції дорівнює 18 см а її діагональ бісектриса гострого кута трапеції. знайти меншу основу трапеції якщо її периметр становить 54 см
СРОЧНОО ​

Ответы на вопрос

Ответил dalintinlukianenko20
1

Відповідь:

Пояснення:

Висота рівнобічної трапеції, яка проведена з вершини тупого кута, поділяє основу на відрізки завдовжки 5 см і 11 см.

Знайти периметр трапеції, якщо її висота дорівнює 12 см.

Обчислення: Далі дамо прості рекомендації як обчислювати задачі та як їх оформляти.

Всюди де це потрібно виконуйте побудову рисунків, в зошитахв клітинку чи на А4 форматі немає значення.

На малюнках позначайте сторни, кути, висоти, діагоналі - все що є задано та дає хоч якусь підказку до правильного ходу обчислень.

Після цього, як маємо рисунок перед очима можемо переходити до пояснень.

Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,

AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.

Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:

AB^2=AH^2+BH^2, звідси

Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні  CD=AB=13 см.

Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).

Розглянемо прямокутні трикутники ABH і KCD.

У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.

Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.

Тоді у рівнобічній трапеції:

HK=HD-KD=11-5=6 см, тому BC=HK=6 см.

Знайдемо периметр рівнобічної трапеції ABCD:

P=AB+BC+CD+AD=13+6+13+6=48 см.

Відповідь: 48 см – В.

Приклад 32.12 Дві менші сторони прямокутної трапеції дорівнюють a, а один з її кутів – 450.

Визначити площу трапеції.

Обчислення: Наведемо рисунок прямокутної трапеції

У трапецію ABCD відомо: AD||BC, AB⊥AD, AB=BC=a – менші сторони трапеції, ∠ADC=45 (як єдиний гострий кут прямокутної трапеції).

Оскільки бічна сторона перпендикулярна до основи AB⊥AD, то AB=a – висота прямокутної трапеції.

Опустимо ще одну висоту CK на сторону AD, тобто CK⊥AD (∠CKD=90).

Очевидно, що вона також рівна заданій стороні CK=AB=a.

У прямокутному трикутнику KCD (∠CKD=90, ∠CDK=45), тому ∠DCK=45 (за сумою кутів трикутника), і робимо висновок,що трикутник ΔKCD – рівнобедрений.

Тобто, CK=DK=a (тут AK=BC=a як протилежні сторони квадрата ABCK).

Звідси AD=AK+KD=a+a=2a.

Знайдемо площу прямокутної трапеції:

Цю площу можна було знайти в легший спосіб, розписавши як суму площ квадрата S[ABCK]=a^2 і прямокутного трикутника S[kcd]=a^2/2

Відповідь: 3/2•a^2 – Д.

Приклад 32.15 Точка O, яка є перетином діагоналей трапеції ABCD (AD||BC), ділить діагональ AC на відрізки AO=8 см і AC=4 см.

Знайти основу BC, якщо AD=14 см.

Обчислення: Нехай маємо трапецію ABCD, AD||BC, AD=14 см, AC=4 см, AO=8 см, де AC і BD – діагоналі трапеції ABCD, які перетинаються в точці O.


mstepanuk90: 8 класі..я навіть такого не знаю як я напишу ? в-дь:3/2•а^2-Д
dalintinlukianenko20: ну напиши половину или что то главное не обезательно всё писать же
Новые вопросы