Алгебра 10 класс. 12 задание
Приложения:

Ответы на вопрос
Ответил fenix6810
0
Ответ:
Объяснение:
2cos(3П/2-x)sin(П/2-x)=√3sin(2П+x) [-5,5П; -3П]
-2sinxcosx=√3sin(x)
2sinxcosx+√3sin(x)=0
sinx(2cosx+√3)=0
sinx=0 2cosx+√3=0
x=Пk
cosx=-√3/2 x=5П/6+2Пk
x=7П/6+2Пk
-5,5П<= Пk <=-3П
-5,5<=k<=-3
k=-5; -4; -3
{x1=-5П ; x2=-4П; x3=-3П}
5П/6+2Пk
-5,5П<=5П/6+2Пk<=-3П
-5,5<=5/6+2k<=-3
-19/6<=k<=-23/12
k=-3; -2
x4=5П/6+2П(-2)=-19П/6
x5=5П/6+2П(-3)=-31П/6
-5,5П<=7П/6+2Пk<=-3П
-5,5<=7/6+2k<=-3
-20/3<=2k<=-4 1/6
-10/3<=k<=-2 1/12
-3 1/3<=k<=-2 1/12
k=-3; -2
x6=7П/6+2П(-2)=-17П/6
x7=7П/6+2П(-3)=-29П/6
Новые вопросы
Русский язык,
2 года назад
Алгебра,
6 лет назад
Математика,
6 лет назад
Алгебра,
8 лет назад
Математика,
8 лет назад