Математика, вопрос задал bogdan39 , 8 лет назад

4. В арифметической прогрессии
a
2
+
a
4
=
16
a2+a4=16,
a
1

a
5
=
28
a1⋅a5=28. Найдите
a
1
a1. В ответ запишите наибольшее значение
a
1
a1.

Ответы на вопрос

Ответил Аноним
0
(a_n) - арифметическая прогрессия
a_2+a_4=16 \ a_1*a_5=28
По свойству арифметической прогрессии:
a_2+a_4=a_1+a_5=16
Исходя из теоремы Виета составим квадратное уравнение и решим его.
left { {{x_1+x_2=16} atop{x_1*x_2=28}} right. \ x^2-16+28=0 \D=256-112=144=12^2 \ x_1=frac{16-12}{2}=2 \ x_2=frac{16+12}{2}=14
Оба значения могут быть присвоены либо первому, либо пятому члену. В случае a1=2 прогрессия возрастающая. В случае a1=14 прогрессия убывающая.
Ответ: 14
Новые вопросы