4. (5Б) В равнобедренном треугольнике ABC с основанием АС проведена медиана ВД. Точка Р- середина стороны BA, точка K — середина стороны ВС. Докажите равенство треугольников ВДР и ВДК. -
Ответы на вопрос
Ответил NNNLLL54
1
Ответ:
ΔАВС , АВ=ВС , АР=РВ , ВК=КС .
Так как АВ=ВС , то и половины этих сторон равны между собой: АР=РВ=ВК=КС .
Рассм. ΔВДР и ΔВДС . У них ВР=ВК , ВД - общая сторона и ∠РВД=∠КВД , так как медиана равнобедр. тр-ка , проведённая к основанию, является ещё и биссектрисой .
Значит, ΔВДР=ΔВДС по 1 признаку равенства треугольников .
Приложения:

Новые вопросы
Русский язык,
2 года назад
Английский язык,
2 года назад
Литература,
7 лет назад
Математика,
8 лет назад