Алгебра, вопрос задал maksonfedor09 , 1 год назад

3cos(2x+pi/7)=√3
хелп​

Ответы на вопрос

Ответил portechkov
0
To solve the equation \(3\cos(2x+\frac{\pi}{7})=\sqrt{3}\), you can start by isolating the cosine term. Divide both sides of the equation by 3:

\[ \cos(2x+\frac{\pi}{7}) = \frac{\sqrt{3}}{3} \]

Now, to find \(x\), take the inverse cosine (arccos) of both sides:

\[ 2x+\frac{\pi}{7} = \arccos\left(\frac{\sqrt{3}}{3}\right) \]

Finally, solve for \(x\). Remember to consider the periodicity of the cosine function, which means there are multiple solutions:

\[ x = \frac{\arccos\left(\frac{\sqrt{3}}{3}\right) - \frac{\pi}{7} + 2n\pi}{2} \]

where \(n\) is an integer.
Новые вопросы