Математика, вопрос задал magashkamma90955 , 2 года назад

3-4 задание. Второй вариант

Приложения:

Ответы на вопрос

Ответил tarasabc
0

Відповідь:

Покрокове пояснення:

3.\\y'=2x^2-5x+3\\2x^2-5x+3=0\\D=25-4*2*3=25-24=1\\x_1=\frac{5-1}{4} =1\\x_2=\frac{5+1}{4} =1.5\\y(1)=\frac{2}{3}-\frac{5}{2}  +3-1=\frac{1}{6}\\ y(1.5)=\frac{2}{3}*1.5^3-\frac{5}{2}*1.5^2  +3*1.5-1=\frac{9}{4} -\frac{45}{8} +4.5-1=\frac{1}{8} \\y(4)=\frac{2}{3}*4^3-\frac{5}{2}*4^2  +3*4-1=\frac{128}{3} -40 +12-1=13\frac{2}{3}\\ y_{min}=\frac{1}{8} \\y_{max}=13\frac{2}{3} \\

4.

5-x^2=1\\x^2=4\\x_1=2\\ x_2=-2\\S=\int\limits^2_{-2} {(5-x^2-1)} \, dx =\int\limits^2_{-2} {(4-x^2)} \, dx=4x-\frac{x^3}{3}|_{-2}^2\\ 4*2-\frac{2^3}{3}-(4*(-2)-\frac{(-2)^3}{3}) =8-\frac{8}{3}+8-\frac{8}{3}=16-\frac{16}{3}=\frac{32}{3}=10\frac{2}{3}

Новые вопросы