Алгебра, вопрос задал azatapparov04 , 6 лет назад

(2х+5) (х-3) >0 и 2х+5/х-3>0

Приложения:

Ответы на вопрос

Ответил sultanserikov009
0

Ответ:

fhhdidjgd

dnfhsichfusuxnebfcjsoskxmvjd

Ответил Alnadya
0

Решение.

Метод интервалов решения неравенств .

\bf 1.\ \ \ \ (2x+5)(x-3) > 0

Определим нули функции.

\bf 2x+5=0\ \ ,\ \ 2x=-5\ \ ,\ \ x_1=-2,5\\\\x-3=0\ \ ,\ \ x_2=3

Определим знаки в интервалах .  + + + + + (-2,5) - - - (3) + + + + +  

Ответ: \boldsymbol{\bf x\in (-\infty;-2,5\, )\cup (\ 3\, ;+\infty \, )}   .

\bf 2.\ \ \ \dfrac{2x+5}{x-3} > 0\ \ ,\ \ x\ne 3

Oпределим нуля числителя и знаменателя.

\bf 2x+5=0\ \ ,\ \ x=-2,5\\\\x-3=0\ \ ,\ \ x=3  

Определим знаки в интервалах .  + + + + + (-2,5) - - - (3) + + + + +  

Ответ:  \boldsymbol{\bf x\in (-\infty;-2,5\, )\cup (\ 3\, ;+\infty \, )}  .

Новые вопросы