Геометрия, вопрос задал safonovalera1807 , 1 год назад

2. Знайдіть критичні точки функції y(x)=x⁴-2x³-2x²+5​

Ответы на вопрос

Ответил goncarola3
2

Відповідь: Щоб знайти критичні точки функції, потрібно знайти похідну та прирівняти її до нуля:

y'(x) = 4x³ - 6x² - 4x

4x³ - 6x² - 4x = 0

4x(x² - (3/2)x - 1) = 0

Таким чином, можна побачити, що критичними точками є x = 0, x = 2, та x = -1/2.

Щоб визначити, які з цих точок є максимумами або мінімумами, потрібно проаналізувати знак похідної в околі кожної точки. Для цього можна скористатися другою похідною:

y''(x) = 12x² - 12x - 4

y''(0) = -4, тому x = 0 є максимумом.

y''(2) = 20, тому x = 2 є мінімумом.

y''(-1/2) = 7, тому x = -1/2 є мінімумом.

Отже, критичні точки функції y(x) = x⁴ - 2x³ - 2x² + 5 мають такі координати: (0, 5), (-1/2, 81/16) та (2, -15). Точка (0, 5) є максимумом, а точки (-1/2, 81/16) та (2, -15) є мінімумами.

Пояснення:

Новые вопросы